
JASPERSERVER

EXTERNAL AUTHENTICATION
COOKBOOK

RELEASE 3.5

http://www.jaspersoft.com

http://www.jaspersoft.com
http://www.jaspersoft.com/

JasperServer External Authentication Cookbook

2

© 2009 Jaspersoft Corporation. All rights reserved. Printed in the U.S.A. Jaspersoft, the Jaspersoft logo, JasperAnalysis,
JasperServer, JasperETL, JasperReports, JasperStudio, iReport, and Jasper4 products are trademarks and/or registered
trademarks of Jaspersoft Corporation in the United States and in jurisdictions throughout the world. All other company and
product names are or may be trade names or trademarks of their respective owners.

This is version 0409-JSP35-1 of the JasperServer External Authentication Cookbook.

Table of Contents

TABLE OF CONTENTS
1 Introduction . 5
1.1 Overview and Terminology . 5
1.2 Multiple Organizations in JasperServer . 6
1.3 Default Internal Authentication . 7
1.4 Acegi Security Framework . 7

1.4.1 Acegi Filter Chain . 8
1.4.2 Step 1: Receiving a Page Request . 8
1.4.3 Step 2: Redirecting to the Login Page . 9
1.4.4 Step 3: Processing Login Credentials . 9
1.4.5 Step 4: Sending Requested Content . 9

1.5 External Users in the JasperServer Database . 10
1.5.1 Automatic Synchronization of External Users . 10
1.5.2 Initialization of JasperServer for External Users . 11
1.5.3 Maintenance of External Users . 11

2 LDAP Authentication . 13
2.1 Overview of External LDAP Authentication . 14
2.2 Configuring JasperServer for LDAP Authentication . 15

2.2.1 Files to Modify . 15
2.2.2 Beans to Configure . 15

2.3 Adding the ldapAuthenticationProvider . 16
2.4 Setting the LDAP Connection Parameters . 16
2.5 Setting the LDAP Search Parameters . 17

2.5.1 Specifying userDnPatterns . 17
2.5.2 Specifying userSearch . 18
2.5.3 Alternate to Bind Authentication . 18

2.6 Mapping the User Roles . 19
2.7 Mapping the User Organization (JasperServer 3.5 Professional Only) . 20

2.7.1 Mapping to an Organization Hierarchy . 21
2.7.2 Mapping to a Single Organization . 21
3

JasperServer External Authentication Cookbook
2.8 Restarting JasperServer . 22
2.9 Authentication with Computer Associates SiteMinder . 22
2.10 Authentication with Microsoft Active Directory . 22

3 CAS Authentication . 25
3.1 CAS Server for Testing . 26
3.2 Overview of External CAS Authentication . 26
3.3 Configuring JasperServer for CAS Authentication . 28

3.3.1 Files to Modify . 28
3.3.2 Beans to Configure . 28

3.4 Configuring Java to Trust the CAS Certificate . 29
3.5 Modifying the Acegi Filter Chain . 30
3.6 Adding the casAuthenticationProvider . 30
3.7 Configuring the CAS Authentication Behavior . 31
3.8 Mapping the User Roles . 32
3.9 Configuring the Filters for CAS . 32
3.10 Restarting JasperServer . 33
3.11 Detailed Protocol Exchange . 33
4

Introduction
1 INTRODUCTION

JasperServer builds on JasperReports as a comprehensive family of Business Intelligence (BI) products, providing robust
static and interactive reporting, report server, and data analysis capabilities. These capabilities are available as either stand-
alone products, or as part of an integrated end-to-end BI suite utilizing common metadata and providing shared services, such
as security, a repository, and scheduling. JasperServer exposes comprehensive public interfaces enabling seamless integration
with other applications and the capability to easily add custom functionality.

This cookbook describes the customization of JasperServer to use an external authentication mechanism in place of the
built-in authentication of users. This document covers the following authentication mechanisms:

LDAP - Lightweight Directory Access Protocol
CAS - Central Authentication Service

The benefits of external authentication include:
Users accounts shared by all applications within your enterprise.
Depending on the authentication mechanism, single sign-on capabilities with other applications within your enterprise.

For deployments that also include JasperAnalysis running within JasperServer, external authentication applies transparently to
JasperAnalysis users.

The procedures in this document assume you are familiar with JasperServer installation, deployment, and administration. You
must have system administrator privileges within JasperServer and unlimited access to the host machine.

This chapter contains the following sections:
Overview and Terminology
Multiple Organizations in JasperServer
Default Internal Authentication
Acegi Security Framework
External Users in the JasperServer Database

1.1 Overview and Terminology
Authentication is the verification of a user’s identity to allow access to JasperServer. By default, anonymous authentication is
disabled, and all users must present valid credentials to login: a username, a password, and in certain cases an organization ID.
Authentication is more than gathering the user credentials, it is a process that ensures that every page is secure, either viewed
by a recognized user or denied access until valid credentials are provided.
5

http://
https://
http://ant.apache.org
http://www.jasperforge.org/jasperbabylon
http://www.craigslist.org/
http://www.craigslist.org/
http://www.oracle.com/technology/tech/globalization/pdf/TWP_NCHAR_MIGRATION_10gR2.pdf
http://www.oracle.com/technology/tech/globalization/pdf/TWP_NCHAR_MIGRATION_10gR2.pdf

JasperServer External Authentication Cookbook
JasperServer users are either people who accesses the web-based interface or applications that accesses the same content
through web services. Authentication for the two types of access is slightly different but operates on the same principles. For
simplicity, this document refers to users as people accessing the web-based interface.

User accounts are created by administrators and stored in an internal database known as the JasperServer database. For
example, when you install JasperServer with the default settings, it requires a MySQL database server where it stores the
JasperServer database tables containing user information. The JasperServer database is independent of database that stores the
data that JasperServer uses to fill your reports, although they may be on the same database server.

Authentication happens only once at the beginning of the user’s session. After a user is authenticated, the user’s session is
represented by an in-memory instance referred to as the principal object in this document. The existence of the principal object
determines that the user is logged on, and the user can access multiple pages throughout the application. The principal object
also stores the roles and organization ID of the user, which are required for authorization within JasperServer.

External authentication is the process of gathering and verifying user credentials through a third-party application; for example
a corporate LDAP directory. The external application is called an authority because it is trusted to contain valid user
information. The process of external authentication depends on the nature of the external authority, and the various
configurations create different usage scenarios. For example, with simple external authentication, users log into the
JasperServer page, but their credentials are verified externally; in a single sign-on configuration, the user may log into another
application, then navigate to JasperServer, without seeing the JasperServer login page.

Authorization is the verification of a user’s roles and organization ID to access JasperServer features, repository objects, and,
in some cases, data. For every page that the user requests, JasperServer determines which menu items, repository contents, and
report contents the user may access, based on the principal object. Authorization happens every time a user accesses a
resource.

In the JasperServer architecture, which is based on the Spring Framework and Acegi Security, authentication may be
configured through an external authority, but authorization is always performed by internal mechanisms. Part of configuring
external authentication is the mapping of external roles and organization IDs into the principal object so that authorization can
proceed internally. The information for authorization is determined when the session of an external user is established and is
also stored in an account representing the external user in the JasperServer database. The information is synchronized every
time the external user begins a new session with JasperServer, so that the JasperServer database contains the user’s latest
information.

1.2 Multiple Organizations in JasperServer
JasperServer Professional 3.5 introduced a new architecture to manage several distinct organizations within the same server.
Each organization has its own users and roles, and possibly a hierarchy of sub-organizations, all of which are invisible to other
organizations. For more information about deploying multiple organizations, see the latest JasperServer Professional
Administration Guide.

Configuring external authentication for servers hosting multiple organizations is similar to servers without the new
architecture, but requires extra steps. The procedures in this book include the basic configuration for all 3.x servers, and when
feasible, the additional steps to support multiple organizations.

The default installation of JasperServer 3.5 Professional includes a single organization that mimics the behavior of
previous releases without organizations. However, even when using a single organization, the architecture still
requires the additional configuration steps to perform external authentication.
6

Introduction
1.3 Default Internal Authentication
Understanding how JasperServer performs internal authentication will help you implement external authentication. The
following diagram shows the general steps involved in the default internal authentication:

The following steps explain the interaction between the user’s browser and JasperServer:
1. An unauthenticated user requests any page in JasperServer.

Often, users bookmark the login page and begin directly at step 3, but this step covers the general case and secures every
possible access to JasperServer. For example, this step applies when a user clicks the page of an expired session or if a
user is given the direct URL to a report within JasperServer.

2. JasperServer detects that the user is not logged in and replies with a redirect to the login page.
For convenience, JasperServer includes the original request in the login screen URL so that the user goes directly to the
requested page after logging in.

3. The user enters a username, password, and possibly an organization ID.
JasperServer compares these credentials with the existing user accounts in the internal user database, and if they are valid,
creates a principal object. The user is now authenticated, and the principal object represents the user session, including
any roles found in the user database.

4. JasperServer sends the requested content to the user, or if none was specified, the home page appropriate for the user.
Content that is sent to the user is subject to authorization. For example the home page has different options for
administrators than for end-users, as determined by the roles of the user in the principal object. If the user is viewing the
repository, the folders and objects that are returned are based on the organization ID and roles in the principal object.

1.4 Acegi Security Framework
JasperServer relies on Acegi Security 1.0.1, an open source security solution that provides the mechanisms to authenticate and
authorize users. Acegi Security is integrated with the Spring Framework, the open source Java application platform that can be
customized through Java beans defined in configuration files.

JasperServer’s default configuration represents the most common use cases, but Acegi’s flexibility can provide very fine-
grained control of the security system. However, since Acegi can be configured in so many ways, you may find its
configuration somewhat daunting. This cookbook presents the most common scenarios for implementing external
authentication.

Figure 1-1 General Steps of Internal Authorization

JasperServer
Page request
Redirect to login page
Login credentials
Requested content

Principal object

(subj. to authorization)

Internal user
databaseincl. roles
7

JasperServer External Authentication Cookbook
For more information about Acegi beyond the scope of this cookbook, refer to the documentation for the Acegi Security 1.0.x,
available at:

http://www.acegisecurity.org/guide/springsecurity.html
http://jasperforge.org/espdocs/docsbrowse.php?group_id=20&fid=24 (PDF)

If you plan to make extensive customizations, JasperSoft recommends that you delve more deeply into Acegi by visiting its
SourceForge project and participating in its community.

The following sections explain the Acegi configuration and flow for each of the four steps shown in Figure 1-1.

1.4.1 Acegi Filter Chain
The main entry point for both authentication and authorization is the securityFilter, which is configured in WEB-INF/
web.xml. As with all J2EE servlet filters, the securityFilter is invoked for every HTTP request for paths in this web
application, whether the request comes from users or automated agents. The securityFilter is essentially a proxy for
Acegi’s FilterChainProxy class, which handles the actual logic that checks and grants authorization. In JasperServer, this
class is instantiated as a Spring bean configured in the WEB-INF/applicationContext-security.xml configuration file:

The configuration of the filterInvocationDefinitionSource property of the filterChainProxy gives a list of URL
request patterns, and for each pattern a sequence or chain of filters. Each filter in the list is a Java servlet bean, meaning it is
given the request and response context and has a chance to take action before control is passed to the next bean in the chain.

Before the patterns, there are two directives that determine how URLs are matched. The first patterns take precedence, so the
most specific patterns are listed before more general ones. The pattern associated with the last expression is usually /** with
the Apache Ant patterns type, because it matches anything that wasn’t caught by a different pattern.

By changing the chain of filters, you can change the behavior for the URLs that match the pattern. You can even define and
add your own filter if you need to implement a custom authentication schema, but that is beyond the scope of this document.
Acegi Security includes support for external authentication by reconfiguring the built-in filters, which is sufficient in almost
every case. The filters themselves are configured through other beans, as described in the following sections.

1.4.2 Step 1: Receiving a Page Request
When JasperServer receives a page request, it is processed by the Acegi filter chain. The URL of the request is matched to one
of the patterns and then the request is processed by the corresponding filter chain.

The /xmla and /services/** patterns represent the JasperServer XML for Analysis (XML/A) servlet and the web services,
respectively. They are configured with one set of filters designed to receive SOAP requests from other servers. All other URLs

<bean id="filterChainProxy" class="org.acegisecurity.util.FilterChainProxy">
<property name="filterInvocationDefinitionSource">

<value>
CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
PATTERN_TYPE_APACHE_ANT

/xmla=httpSessionContextIntegrationFilter,
basicProcessingFilter,JIAuthenticationSynchronizer,anonymousProcessingFilter,
basicAuthExceptionTranslationFilter,filterInvocationInterceptor

/services/**=httpSessionContextIntegrationFilter,
basicProcessingFilter,JIAuthenticationSynchronizer,anonymousProcessingFilter,
basicAuthExceptionTranslationFilter,filterInvocationInterceptor

/**=httpSessionContextIntegrationFilter,authenticationProcessingFilter,
basicProcessingFilter,JIAuthenticationSynchronizer,anonymousProcessingFilter,
exceptionTranslationFilter,filterInvocationInterceptor

</value>
</property>

</bean>
8

http://www.acegisecurity.org/guide/springsecurity.html
http://jasperforge.org/espdocs/docsbrowse.php?group_id=20&fid=24

Introduction
matched by the final pattern are designed for people using web browsers and have a different set of filters; for example, only
people are asked to proceed to the login page.

1.4.3 Step 2: Redirecting to the Login Page
As the request is being processed, Acegi security within JasperServer calls each of the filters in the chain. The standard filter
beans have the following functions:

httpSessionContextIntegrationFilter - Stores the SecurityContext in the HttpSession.
authenticationProcessingFilter - Redirects the user to the login page if not yet authenticated, then processes the
organization ID, username, and password parameters returned from the login page.
basicProcessingFilter - Handles HTTP BASIC style authentication, where the username and password are passed
as an HTTP header.
JIAuthenticationSynchronizer - A custom filter that notifies JasperServer which user has logged in. This filter
ensures that the principal object in memory is synchronized with the information in the user database.
anonymousProcessingFilter - Marks the user as anonymous if no other authentication occurred.
exceptionTranslationFilter - Sets a 403 Forbidden HTTP response code if the user is not authenticated to view the
requested page.
filterInvocationInterceptor - Integrates the filter chain with other Acegi components.

In the example of a user requesting a page, the authenticationProcessingFilter detects that the user is not yet
authenticated and redirects to the login page.

1.4.4 Step 3: Processing Login Credentials
When the user submits credentials from the login page, either spontaneously or after being redirected by the filter chain, the
authenticationProcessingFilter also processes the login request. To do so, it calls authenticationManager bean
that Acegi provides. The configuration of the authenticationManager bean in the WEB-INF/applicationContext-
security.xml file establishes the different methods by which a user can be authenticated.

In the default installation of JasperServer the authenticationManager bean is configured as follows:

The list of authentication providers determines the authentication mechanisms that are invoked:
daoAuthenticationProvider. Compares the organization ID, username, and password from the login page to those
stored in the JasperServer database. This is JasperServer’s default form of authentication.
anonymousAuthenticationProvider. Grants anonymous access to certain pages, by default only to the login page.

As we will see in the chapter for each external authentication mechanism, this list must be updated to configure JasperServer
to use alternate providers.

1.4.5 Step 4: Sending Requested Content
When the authentication provider has successfully checked the user’s credentials, the authenticationManager returns
control to the authenticationProcessingFilter, but now the principal object has been created to establish the user
session. The other filters in the chain can detect the user session and usually have no further action to perform.

The JIAuthenticationSynchronizer does perform a significant task for external authentication, as explained in the next
section. But in the case of internal authentication, the job of the filter chain is done when the principal object has been created.

<bean id="authenticationManager" class="org.acegisecurity.providers.ProviderManager">
<property name="providers">

<list>
<ref local="daoAuthenticationProvider"/>
<ref local="anonymousAuthenticationProvider"/>

</list>
</property>

</bean>
9

JasperServer External Authentication Cookbook
The user is now logged in with an active session. JasperServer processes the requested URL, or in the case of a spontaneous
login, replies with the home page that is appropriate for the user. In fulfilling any request now, JasperServer knows the identity
of the user and generates content based on the user’s organization ID and roles found in the principal object. For example,
administrators see a home page with items to manage JasperServer, and users within each organization can only see repository
objects in their organization’s folder.

1.5 External Users in the JasperServer Database
When performing external authentication, JasperServer obtains all the information about a user from the external authority.
After the authenticationProvider for the external authority has replied and the AuthenticationProcessingFilter
is finished, the user session is represented by a principal object in run-time memory. This principal object includes any roles
mapped from the external authority, as well as an organization ID, if necessary.

As a result, users, roles, and organizations are all defined externally. However, in order to create and enforce permissions
based on these entities, JasperServer must store their values in the JasperServer database. For each external user, role, and
organization, JasperServer creates a local user account, role definition, and organization folder to represent it and allow it to
interact with JasperServer.

There are two aspects to managing these external values:
Automatic synchronization of external users, roles, attributes, and organizations with the JasperServer database. This is
the purpose of the filter called JIAuthenticationSynchronizer.
Manual initialization of JasperServer to set up permissions based on the external credentials.

You must perform the initialization first, during the deployment of JasperServer in a production environment, but you must
understand the synchronization process to perform the initialization. These two processes are explained in the following
sections.

1.5.1 Automatic Synchronization of External Users
When a user is authenticated by an external authority, JasperServer has the principal object that contains the username, role
names, and organization ID, if necessary, of the external user. The JIAuthenticationSynchronizer filter uses this
information to update or create the corresponding structures in the JasperServer database:

The organization ID may include a hierarchy of organizations to specify the parental lineage of the designated
organization. If there is no organization with the given ID in the designated place in the organization hierarchy, that
organization is created. Any parent organizations that do not exist are created as well. Organizations are created with the
templates currently defined in the JasperServer repository.
Any role names are compared to existing roles. If an organization ID is specified, only the roles in the organization are
checked. If the roles do not exist, they are created. If an organization ID is specified, they are created within the
organization.
The username is compared to the user ID of existing user accounts in the JasperServer database. If an organization ID is
specified, only the usernames in that organization are checked. If the user account exists, its list of assigned roles is
replaced with the list of roles in the principal object. This is how the external user account is synchronized with the
external authority.
If the user does not exist, a user account is created. If an organization ID is specified, the user is created within the
organization. Finally, all of the roles in the principal object are assigned the new user account.

For more information about how organizations, roles, and users are created, see the latest JasperServer Professional
Administration Guide.

A user account created for an external user has the same structure as an internal user account but differs in the following ways:
It does not store the password.
It does not have any values for the optional fields of a user, such as the full name or email.

When fulfilling any request after the user is authenticated, JasperServer still processes the entire filter chain in Acegi
Security. However, in Step 1: Receiving a Page Request, the user session is recognized by its active principal
object, no filter will be triggered, and JasperServer immediately processes the request to generate the content.
10

Introduction
It has a flag that marks it as an externally defined, which is used in the web interface to identify external users.

After synchronization, the external user fits in coherently with all the structures and mechanisms of JasperServer, in particular
those required to verify authorization.

1.5.2 Initialization of JasperServer for External Users
Knowing how external users are synchronized, the system administrator must create the permissions in the repository that will
perform the desired authorization in the production environment.

Your deployment procedure must include the following steps:
1. Configure the mapping of usernames, roles, and possibly organization IDs from your external authority into JasperServer.

The mapping will depend on the external authentication mechanism, as described in the chapter for each mechanism.
2. Create test users in the external authority that are typical of users you expect to connect through JasperServer. The test

users should be from every organization and have every role that you expect in your initial production environment.
3. Verify the external authentication and user mapping mechanisms by accessing JasperServer as the test users. Ensure that

the data structure in the external authority conforms to the mapping in such a way to create the external users, roles and
organizations that you expect.

4. Log into JasperServer with all of the test users, thereby creating all of the organizations and roles in your environment
through the automatic synchronization.

5. Log into JasperServer as the system administrator to initialize your repository:
a. Define your repository structure around the organization folders that were created, if applicable.
b. Define all of your repository permissions using the roles that were created.

The above procedure is necessary because the roles must exist in the JasperServer database before you can create permissions
based on them. And if you are using organizations, roles must be defined within organizations, so they must exist as well.

When JasperServer enters into production, the external user accounts will be populated by the synchronization mechanism as
the users log in. When the mapping is correct and consistent, the user population will have the same roles and possibly
organizations that exist in your external authority, without having to manually import users or roles into JasperServer.

1.5.3 Maintenance of External Users
The advantage of an external authority is that it provides a single place to manage user accounts. Due to the mapping and
synchronization, you do not need to manage the external users or roles in JasperServer, with small exceptions documented
below.

1.5.3.1 User Management

The following paragraphs describe the impact on JasperServer when managing users in the external authority.
Creating a new user - JasperServer will automatically create the new external user account when the user first accesses
JasperServer. As long as the user relies on existing roles in an existing organization, the user will require no changes on
JasperServer. If the user is associated with new roles, see Role Management below.
Modifying a user - Various modifications are possible, depending on your external authority. The following list gives the
impact for the most common modifications:

JasperServer does not store the passwords of external users, and is not impacted by changes to user passwords or user
password policies on the external authority.
Even though JasperServer user accounts have a field for the user’s full name, this value is not mapped. Only changes
to values that are mapped to JasperServer will impact the external user. And because the mapping determines the
username, roles, or organization ID, such changes will affect how the user is synchronized. Such changes are likely to
be undesirable side-effects that can be detected by testing the mapping mechanism in 1.5.2, “Initialization of
JasperServer for External Users,” on page 11.

Creating and logging in as test users is not strictly required, but it validates the authentication and mapping
mechanisms. You may use the administrative pages in JasperServer to create all the organizations and roles that your
externally authenticated users will need, but you must ensure that their IDs will match exactly the values that are
determined by the mapping.
11

JasperServer External Authentication Cookbook
When changing the roles assigned to a user, the roles will be synchronized automatically at the beginning of the
user’s next session in JasperServer, as described in 1.5.1, “Automatic Synchronization of External Users,” on
page 10. Roles that were previously unknown to JasperServer will be treated like new roles, and roles that are no
longer assigned to any user will be treated like deleted roles, both described in Role Management below.

Disabling or deleting a user - When the user can no longer authenticate with the external authority, he or she cannot access
JasperServer. The external user account synchronized during the last user session will remain in the JasperServer
database. This user account has no impact on JasperServer, and you can safely delete it, if desired.

1.5.3.2 Role Management

The following paragraphs describe the impact on JasperServer when modifying role definitions in the external authority.
Creating a new role - Role definitions are not directly mapped to JasperServer, only roles that are assigned to users who
log in are mapped. When you create a new role and assign it to a user who accesses JasperServer, determine which case
applies:

The role is significant to access control that impacts JasperServer. You will need to initialize this role in JasperServer
with a test user and define all necessary repository authorization rules to secure your data before you deploy this role
to real users. This case is similar to the initialization during the deployment phase, describe in 1.5.2, “Initialization
of JasperServer for External Users,” on page 11.
The role is not significant to users within JasperServer. The synchronization will automatically create the role and
assign it to users according to their mapping, but with no authorization rules based on the role, it will have no impact.

In practice, you will find that only a subset of the rules in your external authority will be applicable to JasperServer. Some
of these roles may be used in other applications, some may be created specifically for managing users in JasperServer.
Because maintenance of your enterprise-wide user database may affect JasperServer, you should identify the user
management procedures that impact JasperServer, such as modifications to roles, and document the procedures for adding
them to JasperServer as described above.
Modifying role membership - Changes in role membership will be reflected the next time the role members start a new
session on JasperServer. Roles that were previously unknown to JasperServer will be treated like new roles described
above, and roles that are no longer assigned to any user will be treated like deleted roles described below.
Deleting a role - When the role is deleted, users will no longer have the role, and it will be removed from each external
user during the synchronization at the beginning of the next session. The external role definition will remain in the
JasperServer database, as well as any permissions that reference the role. The defunct role may still be assigned to
external users if they were deleted or have not logged in since the role was removed. This unused role definition has no
impact on JasperServer, and you can safely delete it, if desired.

1.5.3.3 Organization Management

The following paragraphs describe the impact on JasperServer when modifying organizations defined in the external authority.
Adding an organization - Organization definitions are not directly mapped to JasperServer, rather a new organization ID
will be mapped when synchronizing the first user in the organization that accesses JasperServer. At that time, the
synchronization will create the organization and create the user within it, along with any roles assigned to the user. You
may want to create test users in the new organizations first, so you can configure the new organization folder and assign
repository permissions before actual users have access. However, if you use roles with the same name in every
organization, you may also configure the organization folder templates so that the default contents work with the known
role names (there will be roles with the same name in each organization).
Modifying an organization - Users who are added to an organization will be handled like new users described in 1.5.3.1,
“User Management,” on page 11. Users who are removed from an organization will be handled like deleted users,
provided they can no longer authenticate with the external authority. If users are moved to a different organization, or the
mapping for their new status still succeeds, their external user accounts will be synchronized the next time they access
JasperServer and authenticate successfully.
Deleting an organization - Because organization definitions are not mapped directly, deleting an organization has the
same effect as removing each of its users, which is described above.
12

LDAP Authentication
2 LDAP AUTHENTICATION

Lightweight Directory Access Protocol (LDAP) is one of the most popular architectures for enterprise directories. By
centralizing all user management in an LDAP directory, applications across the enterprise can share the same user database,
and administrators do not need to duplicate user accounts in every application.

This chapter shows how JasperServer’s default authentication mechanism using Acegi Security can be configured to perform
external authentication with LDAP. As part of the authentication process, JasperServer also synchronizes the user information
such as roles and organization ID from the LDAP structure into its own user database.

LDAP authentication does not provide single sign-on (SSO) functionality. You must implement additional mechanisms and
configure their use within JasperServer to enable SSO with LDAP, the details of which are beyond the scope of this document.

This chapter assumes you are familiar with LDAP servers and the structure of the data they contain, in particular the format of
distinguished names (DNs) and relative distinguished names (RDNs) that create structure and identify entries in LDAP.

This chapter contains the following sections:
Overview of External LDAP Authentication
Configuring JasperServer for LDAP Authentication
Adding the ldapAuthenticationProvider
Setting the LDAP Connection Parameters
Setting the LDAP Search Parameters
Mapping the User Roles
Mapping the User Organization (JasperServer 3.5 Professional Only)
Restarting JasperServer
Authentication with Computer Associates SiteMinder
Authentication with Microsoft Active Directory
13

JasperServer External Authentication Cookbook
2.1 Overview of External LDAP Authentication
This section explains how JasperServer performs external authentication with an LDAP server, highlighting the differences
with section 1.3, “Default Internal Authentication,” on page 7. The following diagram shows the general steps involved in
external LDAP authentication:

The following steps explain the interaction between the user’s browser, JasperServer, and the LDAP server:
1. An unauthenticated user requests any page in JasperServer.

Often, users will bookmark the login page and begin directly at step 3, but this step covers the general case and secures
every possible access to JasperServer. For example, this step applies when a user clicks on the screen of an expired
session or if a user is given the direct URL to a report within JasperServer.

2. JasperServer detects that the user is not logged in and replies with a redirect to the login page.
Users log into JasperServer’s own login page even though the user credentials are not verified internally.

3. The user enters a username and password. Even on a server with multiple organizations, the organization ID must be left
blank because it will be determined from the external LDAP authority.
JasperServer performs a search on the LDAP server with the given credentials. If they are valid, the search will return the
user’s entry in the LDAP directory, which JasperServer uses to create a principal object. The user’s roles and organization
ID are mapped from the LDAP entry and stored in the principal object.
The username, roles and organization information are also synchronized with the JasperServer database, where the user
account is marked as an external user. The user is now authenticated, the principal object represents the user session, and
the JasperServer environment is coherent with the user’s roles and organization.
For more information about the external user account that JasperServer synchronizes from the user information returned
by the external authority, see section 1.5, “External Users in the JasperServer Database,” on page 10.

4. As with the default internal authorization, JasperServer now sends the requested content to the user, or if none was
specified, the home page appropriate for the user.
Content that is sent to the user is subject to authorization. For example the home page has different options for
administrators and regular users, as determined by the roles of the user in the principal object. Or if the user is viewing the
repository, the folders and objects that will be returned will be based on the organization ID and roles in the principal
object.

When comparing these steps with those in section 1.3, “Default Internal Authentication,” on page 7, there are three
significant differences, all in step 3:

JasperServer verifies the credentials through LDAP instead of with its internal user database.
The roles and organization ID in the user’s principal object are mapped from the LDAP response.
The JasperServer database must be synchronized with any new information in the user’s principal object.

Figure 2-1 General Steps of External LDAP Authentication

JasperServer
Page request
Redirect to login page
Login credentials
Requested content
(subj. to authorization)

LDAP

Internal user
database

Principal object
incl. roles
14

LDAP Authentication
2.2 Configuring JasperServer for LDAP Authentication
The differences listed in the previous section reflect the changes that need to be made in the Acegi Security configuration:

Add LDAP as an authentication provider in the authenticationManager bean and configure it to access your LDAP
server and search for users.
Configure the LDAP authentication provider to map roles and organizations, if applicable.
The synchronization is already handled by the JIAuthenticationSynchronizer.

Because the response to page requests is the same as with internal authentication, there is no need to change the default filter
chain. However, as user requests are processed by the filter chain, it will behave differently in the following two ways:

The authenticationProcessingFilter will now call the LDAP authentication provider.
The JIAuthenticationSynchronizer will now synchronize every external user instead of being mostly inactive.

The following sections explain how to make the configuration changes presented above.

2.2.1 Files to Modify
All configuration for external LDAP authentication is made in the following files:

<application-server-path>/jasperserver[-pro]/WEB-INF/applicationContext-security.xml
<application-server-path>/jasperserver-pro/WEB-INF/applicationContext-multiTenancy-security.xml if you installed
JasperServer 3.5 Professional that has the new organization architecture. This file does not exist in other releases.

Where:
<application-server-path> is the location of the application server in which you deployed JasperServer.
-pro is part of the default pathname if you installed JasperServer Professional.

The rest of this document refers to file names alone. Refer to the paths above to find the file in your deployment.

2.2.2 Beans to Configure
This section explains the beans that are involved in external LDAP authentication and how they relate to each other. They are
listed here in the order they appear in the files above.

authenticationManager - Name of a bean of class ProviderManager for performing authentication, configured
with:

ldapAuthenticationProvider - Bean for performing LDAP authentication, configured below.
initialDirContextFactory - Name of a bean of class DefaultInitialDirContextFactory configured with the
LDAP connection parameters.
userSearch - Name of a bean of class FilterBasedLdapUserSearch configured with user search parameters.
ldapAuthenticationProvider - Name of a bean of class LdapAuthenticationProvider, configured with:

BindAuthenticator - Class of an anonymous bean for finding user entries, configured with:
initialDirContextFactory - Required for accessing the LDAP server.
User DN patterns and/or userSearch - Required for finding the user entry.

DefaultLdapAuthoritiesPopulator - Class of an anonymous bean configured with:
initialDirContextFactory - Required for accessing the LDAP server.
Role search parameters - Required for finding user roles to map.

ldapExternalUserProcessor - Name of a bean o f class LdapExternalUserProcessor in JasperServer 3.5
Professional, configured with:

initialDirContextFactory - Required for accessing the LDAP server.
Organization mapping parameters - Required for finding the user’s organization ID.

Configuring JasperServer for external LDAP authentication is a common customization that is provided by Acegi
Security. As a result, Acegi provides the beans to implement it, and the applicationContext-security.xml file contains
commented code for many of the modifications given in the following sections. You will need to uncomment the code
and make modifications according to your LDAP configuration.
15

JasperServer External Authentication Cookbook
2.3 Adding the ldapAuthenticationProvider
In applicationContext-security.xml, locate the authenticationManager bean and add ldapAuthenticationProvider
to the top of the list of providers. The ldapAuthenticationProvider bean is provided in the Acegi Security package.

As shown in the example above, you can list other authentication providers with LDAP. The authenticationManager bean
will attempt to authenticate a user session with each provider in the list, in the order they appear. When one of the providers
successfully authenticates the user, the rest of the providers are skipped.

The daoAuthenticationProvider is the default internal authentication using the JasperServer database, so in this
example, any user credentials that are not recognized by the LDAP directory will be compared to those of locally defined
users. For example, during a default installation, the jasperadmin and superuser accounts are created for JasperServer
administrators. If you wish to continue using these accounts after configuring LDAP authentication for your end users, keep
the daoAuthenticationProvider in the list of authentication providers.

If LDAP is your primary authentication mechanism for the majority of users, you should place it first in the list of providers
for performance reasons. Alternatively, if you wish to enforce LDAP as the only authentication mechanism, remove all other
authentication providers except for the anonymousAuthenticationProvider. Anonymous authentication is necessary to
display the JasperServer login page, however anonymous access to all other pages is disabled by default.

2.4 Setting the LDAP Connection Parameters
Several beans need to access the LDAP directory and must be configured with the connection parameters for the LDAP server.
This is done through the configuration of a helper bean called initialDirContextFactory that will later be given to the
constructors of the beans that need it.

In applicationContext-security.xml, locate the initialDirContextFactory bean and uncomment it if necessary. Specify
the following information:

The URL of your LDAP server, including the base DN.
The distinguished name (DN) of your LDAP administrator.
The password of your LDAP administrator.

<bean id="authenticationManager"class="org.acegisecurity.providers.ProviderManager">
<property name="providers">

<list>
<ref local="ldapAuthenticationProvider"/>
<ref local="daoAuthenticationProvider"/>
<ref local="anonymousAuthenticationProvider"/>

</list>
</property>

</bean>

The JasperServer database contains accounts for all of the external users that have previously logged into
JasperServer. However, these external accounts do not contain passwords and cannot be used for authentication, for
example in the case that the LDAP server in unavailable.

If your LDAP server is configured to allow anonymous user lookup, you do not need to specify the managerDn or
managerPassword properties.
16

LDAP Authentication
The following example shows the syntax of the bean’s constructor and properties:

2.5 Setting the LDAP Search Parameters
The ldapAuthenticationProvider bean must be initialized with a bean of the class BindAuthenticator that
encapsulates search parameters for finding users in the LDAP directory. There are two ways of finding users in the directory:

Matching RDN patterns based on the login name provided by the user. Use this method if the login name appears in the
DN of your user entries, and your user entries are in a fixed branch of your LDAP directory.
Performing a search for the login name provided by the user. Use this method if the login name is the value of an attribute
that does not appear in the RDN, or if your user entries are located in a more complex structure. In particular, if you are
authenticating users for one or more organizations, it is likely that user entries are not in a single branch of your directory.

In terms of performance, matching patterns is faster because doing so checks for the existence of a DN in the LDAP directory
as opposed to performing a search. You can configure both matching and searching by combining the instructions in the
following subsections. In this case, the patterns will be matched first, and the search will be performed only if no match is
found.

2.5.1 Specifying userDnPatterns
If you have a fixed structure of user entries and the login name of the user appears in the RDN of your user entries, you can
easily configure the BindAuthenticator bean with patterns to match them.

In applicationContext-security.xml, locate the ldapAuthenticationProvider bean and uncomment it if necessary. The
BindAuthenticator bean is the first constructor argument.

In the properties that configure BindAuthenticator, the userDnPatterns property contains a list of values that give
patterns for matching the RDNs of user entries. For each value in the list, JasperServer will substitute the login name for the
{0} placeholder, then create a DN by appending the base DN from the LDAP URL. The LDAP URL is the one specified in
section 2.4, “Setting the LDAP Connection Parameters,” on page 16.

JasperServer will attempt to bind to the LDAP directory with the DN created with each pattern, in the order they are given.

In the example below, JasperServer will look for a user whose given login name appears in the uid attribute of the RDN in
two different branches of the LDAP directory:

When you specify the userDnPatterns property in the BindAuthenticator bean, you do not need to uncomment the
userSearch bean described in the next section, unless you want to enable both types of user search.

<bean id="initialDirContextFactory"
class="org.acegisecurity.ldap.DefaultInitialDirContextFactory">

<constructor-arg value="ldap://hostname:389/dc=example,dc=com" />
<property name="managerDn"><value>cn=Administrator,dc=example,dc=com</value></property>
<property name="managerPassword"><value>password</value></property>

</bean>

<bean id="ldapAuthenticationProvider"
class="org.acegisecurity.providers.ldap.LdapAuthenticationProvider">

<constructor-arg>
<bean class="org.acegisecurity.providers.ldap.authenticator.BindAuthenticator">

<constructor-arg><ref local="initialDirContextFactory"/></constructor-arg>
<property name="userDnPatterns"><list>

<value>uid={0},ou=administrators</value>
<value>uid={0},ou=people</value></list></property>

</bean>
</constructor-arg>
...

</bean>
17

JasperServer External Authentication Cookbook
2.5.2 Specifying userSearch
To perform a search to locate user entries, configure the helper bean called userSearch that is in turn used to configure the
BindAuthenticator bean.

In applicationContext-security.xml, locate the userSearch bean and uncomment it if necessary. Specify the following
information:

An optional branch DN where user entries are located. If not specified, the search will include your entire LDAP directory
starting from the root.
The attribute to compare with the login name. This expression will substitute the login name entered by the user for the
{0} placeholder to perform the search.
Whether or not the search should extend to all subtrees beneath the branch DN or beneath the root when no branch DN is
specified.

The following example shows the syntax of the bean’s constructor and property:

The combination of these three parameters lets you optimize the search for your user entries and reduce the load on your
LDAP directory. For example, if your users are located in a dedicated branch of your LDAP structure, specify it in the first
constructor argument to avoid searching the entire tree.

Finally, in applicationContext-security.xml, locate the ldapAuthenticationProvider bean and uncomment it as well.
Specify the userSearch bean in the userSearch property to configure the BindAuthenticator bean in the first
constructor argument of the ldapAuthenticationProvider bean. The following example shows the
BindAuthenticator bean configured with userSearch:

2.5.3 Alternate to Bind Authentication
In Acegi Security, the task of the BindAuthenticator bean is to access the LDAP directory to determine the DN of the user.
To do this, it performs a “bind” authentication on the LDAP directory, which consists of the following steps:
1. Using either the pattern matching or the search described above, find a candidate user entry based on the login name.
2. Attempt to login to the LDAP server, known as binding, as the candidate with the login password.
3. A successful bind indicates the right user was found.

<bean id="userSearch"
class="org.acegisecurity.ldap.search.FilterBasedLdapUserSearch">

<constructor-arg index="0"><value>ou=people</value></constructor-arg>
<constructor-arg index="1"><value>(uid={0})</value></constructor-arg>
<constructor-arg index="2"><ref local="initialDirContextFactory" /></constructor-arg>
<property name="searchSubtree"><value>true</value></property>

</bean>

In an environment where you are authenticating users for one or more organizations in JasperServer, the search
parameters must be able to locate all users for all organizations.

<bean id="ldapAuthenticationProvider"
class="org.acegisecurity.providers.ldap.LdapAuthenticationProvider">

<constructor-arg>
<bean class="org.acegisecurity.providers.ldap.authenticator.BindAuthenticator">

<constructor-arg><ref local="initialDirContextFactory"/></constructor-arg>
<property name="userSearch" ref="userSearch"/>

</bean>
</constructor-arg>
...

</bean>
18

LDAP Authentication
Bind authentication with the BindAuthenticator bean is default behavior when configuring Acegi Security for LDAP
authentication. However, Acegi Security provides an alternate authentication method based on password comparison:
1. Use the administrator credentials in the initialDirContextFactory bean to log into the LDAP server.
2. Find a candidate user entry.
3. Retrieve the candidate’s password attribute and compare it to the login password, or send the login password for

comparison by the LDAP server.

The alternate authentication method is implemented by Acegi Security in the PasswordComparisonAuthenticator class.
However, configuring Acegi with this class is beyond the scope of this documentation. For more information, see the Acegi
documentation and the Acegi Javadoc.

2.6 Mapping the User Roles
The roles that an external user will have in JasperServer are based on the static groups to which the user belongs in LDAP. The
mapping defines the location of the group definitions in LDAP, how to find the groups to which the user belongs, and any
transformation of the group name for use in JasperServer as a role name. The mapping for user roles is configured in a bean of
the class DefaultLdapAuthoritiesPopulator, itself part of the configuration of the ldapAuthenticationProvider
bean.

In applicationContext-security.xml, locate the ldapAuthenticationProvider bean that you uncommented when
specifying the search parameters. In the second constructor argument, specify the following information:

An optional branch DN where group entries are located. If not specified, the search will include your entire LDAP
directory starting from the root.
The group role attribute, which is the attribute name in the RDN of the group entry. The value of this attribute will be the
name that is mapped to a role.
A group search filter that will locate entries representing groups to which the user belongs. For static groups, this filter
should detect entries with the groupofuniquename object class and with a uniqueMember value that matches the login
name given by the user.
Whether or not the search should extend to all subtrees beneath the branch DN or beneath the root when no branch DN is
specified.
Whether or not the group name should be converted to all upper case when mapped to a role name in JasperServer.
An optional prefix to add to the group name when mapped to a role name in JasperServer.

Some LDAP servers also support other user-grouping mechanisms, such as nsrole in the Sun Directory Server.
These mechanisms may be mapped into JasperServer roles through the configuration parameters below, by
extending the DefaultLdapAuthoritiesPopulator class, or a combination of both. As another example, you can
customize the populator bean to map administrators of your LDAP server into system administrators of JasperServer.
Such configurations are beyond the scope of this document.
19

JasperServer External Authentication Cookbook
The following example shows the syntax of the constructor arguments and properties:

With the DefaultLdapAuthoritiesPopulator, all roles found for a user will be converted to uppercase and given the
prefix ROLE_ when created in JasperServer. To change this mapping, specify other values for the optional
convertToUpperCase and rolePrefix properties.

2.7 Mapping the User Organization (JasperServer 3.5 Professional Only)
In JasperServer 3.5 Professional, all users and roles belong to an organization. In turn, the organization determines the folders
that the user may access in the repository. Therefore, the final part of mapping is determining the ID of the organization in
which the external user and roles should be placed.

LDAP is well suited to mapping users into organizations, because LDAP itself has a hierarchal structure of user entries that is
often used to represent separate organizations such as the internal departments of a company. The LDAP structure is reflected
in the elements of the RDN of each user entry, and JasperServer maps this RDN into an organization or hierarchy or
organizations for the external user. For example, the users uid=jack,ou=audit,ou=fincance,dc=example,dc=com and
uid=jill,ou=accounting,ou=finance,dc=example,dc=com could be mapped to the organizations audit and
accounting, respectively, both of which are sub-organizations of finance.

In order to ensure consistency, JasperServer must create the organization of any external user if the organization does not
already exist. JasperServer will also create any organization that does not exist in the hierarchy of organizations mapped from
the user RDN. To avoid “stray” organizations that are outside of your intended hierarchy, test your mapping against all
potential user DNs in your LDAP directory. For more information about mapping external users, including strategies to
initialize your JasperServer instance, see section 1.5, “External Users in the JasperServer Database,” on page 10.

In the default installation of JasperServer 3.5 Professional, there is a single, transparent organization that mimics the
appearance of previous versions without organizations. However, you must still specify a mapping to its organization ID, so
that external users are not placed in new, separate organizations. The configuration for this case is presented separately after
the general case below.

<bean id="ldapAuthenticationProvider"
class="org.acegisecurity.providers.ldap.LdapAuthenticationProvider">

<constructor-arg>
...

</constructor-arg>
<constructor-arg>

<bean class="org.acegisecurity.providers.ldap.populator.
DefaultLdapAuthoritiesPopulator">

<constructor-arg index="0"><ref local="initialDirContextFactory"/></constructor-arg>
<!-- optional branch DN for roles -->
<constructor-arg index="1"><value></value></constructor-arg>
<property name="groupRoleAttribute"><value>cn</value></property>
<property name="groupSearchFilter"><value>

(&(uniqueMember={0})(objectclass=groupofuniquenames))</value></property>
<property name="searchSubtree"><value>true</value></property>
<!-- Other possible properties
<property name="convertToUpperCase"><value>true</value></property>
<property name="rolePrefix"><value></value></property>
-->

</bean>
</constructor-arg>

</bean>

As with role mapping, you can create custom organization mappings by extending the class
LdapExternalUserProcessor. Such a configuration is beyond the scope of this document.
20

LDAP Authentication
2.7.1 Mapping to an Organization Hierarchy
In applicationContext-multiTenancy-security.xml, locate the mtUserAuthorityServiceTarget bean and its
userProcessors property. In the list of user processors, uncomment the reference to the ldapExternalUserProcessor
bean.

Further in the file, locate the ldapExternalUserProcessor bean and uncomment it. Specify the following information to
map the RDN of the user to the hierarchy of organizations in JasperServer:

Whether or not the base DN, also called root DN, should be mapped along with the RDN. For example, if you do not
exclude the root DN of dc=example,dc=com, it will map to a top-level organization whose ID is com containing a sub-
organization whose ID is example. The base DN is part of the LDAP URL specified in section 2.4, “Setting the LDAP
Connection Parameters,” on page 16.
A list of attributes names that determines which RDN values should be mapped to organization names. The attributes in
this list determine the RDNs that will create a hierarchy of organizations in JasperServer. For example, if you specify the
value ou, each RDN with ou=<name> creates an organization in the hierarchy.
A root organization ID under which any mapped organizations are created as sub-organizations. If the root organization
ID is not specified, and the DN of a user does not map to any organization ID, the user will have a null organization ID.
The null organization ID is usually reserved for special users such as the system administrator, so you should avoid this
sort of mapping either by specifying a root organization ID or ensuring that every user maps to an organization ID.

The following example shows the syntax of the beans and their properties:

2.7.2 Mapping to a Single Organization
In the default installation of JasperServer 3.5 Professional, there is a single organization that mimics the behavior of
JasperServer without organizations. To map all external LDAP users to the single, default organization, regardless of any

<bean id="mtUserAuthorityServiceTarget"
...
<property name="userProcessors">

<list>
<!-- For LDAP authentication -->
<ref bean="ldapExternalUserProcessor"/>

</list>
</property>

</bean>

<bean id="ldapExternalUserProcessor" class="com.jaspersoft.jasperserver.
multipleTenancy.ldap.LdapExternalUserProcessor">

<property name="initialDirContextFactory" ref="initialDirContextFactory" />
<property name="multiTenancyService">

<ref bean="internalMultiTenancyService"/></property>
<property name="excludeRootDn" value="true"/>
<!-- only following RDNs will matter in creating the organization hierarchy -->
<property name="organizationRDNs">

<list>
<value>o</value>
<value>ou</value>

</list>
</property>
<property name="rootOrganizationId" value=""/>

</bean>
21

JasperServer External Authentication Cookbook
structure in the LDAP directory, follow the instructions in section 2.7.1, “Mapping to an Organization Hierarchy,” on
page 21, but specify the following property values:

When there is no list of organization RDNs, the user DN does not map to any organization hierarchy. Finally,
organization_1 is the ID of the single, default organization, so all external LDAP users are placed there.

2.8 Restarting JasperServer
When you have configured all the beans in the appropriate files, restart JasperServer for the changes to take effect.

To test your configuration, navigate to the JasperServer login page. If JasperServer and LDAP are configured correctly, you
can log into JasperServer with credentials that are stored in your LDAP directory.

2.9 Authentication with Computer Associates SiteMinder
Computer Associates SiteMinder is an LDAP-based user directory that can be used to authenticate users through the
ldapAuthenticationProvider provided by Acegi Security. Simply follow the configuration instructions in this chapter
and substitute the connection parameters, search parameters, role mappings, and organization mappings that are specific to
your SiteMinder directory structure.

2.10 Authentication with Microsoft Active Directory
Microsoft Active Directory can also be used to authenticate users through the ldapAuthenticationProvider provided by
Acegi Security.

For the purposes of basic external authentication, the only difference in configuration between Active Directory and a standard
LDAP server is the need to search for the sAMAccountName attribute containing the user’s login name. Because of this
specificity, you must use the BindAuthenticator bean, along with the userSearch bean and corresponding property in
BindAuthenticator.

<bean id="ldapExternalUserProcessor" class="com.jaspersoft.jasperserver.
multipleTenancy.ldap.LdapExternalUserProcessor">

<property name="initialDirContextFactory" ref="initialDirContextFactory" />
<property name="multiTenancyService">

<ref bean="internalMultiTenancyService"/></property>
<property name="excludeRootDn" value="true"/>
<property name="organizationRDNs"><list></list></property>
<property name="rootOrganizationId" value="organization_1"/>

</bean>
22

LDAP Authentication
The following example shows all the configuration beans in applicationContext-security.xml for LDAP authentication,
including the special syntax for Active Directory:

In the example above, the role mapping is omitted, as is the organization mapping. You must include a role mapping for any
roles you wish to import into JasperServer, and you must include an organization mapping if you use JasperServer 3.5
Professional.

<bean id="authenticationManager" class="org.acegisecurity.providers.ProviderManager">
<property name="providers">

<list>
<ref local="ldapAuthenticationProvider"/>
<ref local="daoAuthenticationProvider"/>
<ref local="anonymousAuthenticationProvider"/>

</list>
</property>

</bean>

<bean id="initialDirContextFactory"
class="org.acegisecurity.ldap.DefaultInitialDirContextFactory">

<constructor-arg value="ldap://hostname:389/dc=ADexample,dc=com"/>
<property name="managerDn"><value>cn=Administrator,dc=ADexample,dc=com</value></property>
<property name="managerPassword"><value>password</value></property>

</bean>

<bean id="userSearch" class="org.acegisecurity.ldap.search.FilterBasedLdapUserSearch">
<constructor-arg index="0"><value>cn=Users</value></constructor-arg>
<constructor-arg index="1"><value>(sAMAccountName={0})</value></constructor-arg>
<constructor-arg index="2"><ref local="initialDirContextFactory"/></constructor-arg>
<property name="searchSubtree"><value>true</value></property>

</bean>

<bean id="ldapAuthenticationProvider"
class="org.acegisecurity.providers.ldap.LdapAuthenticationProvider">

<constructor-arg>
<bean class="org.acegisecurity.providers.ldap.authenticator.BindAuthenticator">

<constructor-arg><ref local="initialDirContextFactory"/></constructor-arg>
<property name="userSearch"><ref local="userSearch"/></property>

</bean>
</constructor-arg>
<constructor-arg>

...
</constructor-arg>

</bean>
23

JasperServer External Authentication Cookbook
24

CAS Authentication
3 CAS AUTHENTICATION

Central Authentication Service (CAS) is an open source, Java-based authentication server that includes a mechanism for single
sign-on (SSO) across web applications, including those running on different application servers. When a user requests a page
from a CAS-enabled web application, the application redirects the user to the CAS server login page. Thereafter, logged-in
users can navigate between all participating applications without needing to log in again. Each application communicates with
the CAS server in the background to verify the user is valid before providing access to its resources.

With the CAS protocol, the client application such as JasperServer never receives or transmits the user’s password. As a result,
the client application does not need to apply any encryption to protect passwords.

This chapter shows how JasperServer’s default authentication mechanism using Acegi Security can be configured to perform
external authentication with CAS. In order to participate in SSO, the JasperServer configuration is more complex than with
simple authentication. In particular, you must modify the filter chain, replace certain filter implementations, and add helper
beans to the configuration files.

In addition to the beans provided by Acegi Security to support CAS, JasperServer provides additional helper beans for CAS
integration. The implementation of these custom beans is sufficient to enable CAS authentication but may not provide enough
functionality in a complex deployment. However, further customization of these helper beans is beyond the scope of this
document.

This chapter assumes you are familiar with security concepts such as certificates, tokens, and cookies that are exchanged with
CAS. The first section explains how to install a CAS server for testing, and all examples refer to the test server. All examples
assume you are using the Apache Tomcat application server. When configuring JasperServer to use CAS in production, you
must take into account any difference between your test and production environments, such as differences in application
servers and the contents of certificates.

This chapter contains the following sections:
CAS Server for Testing
Overview of External CAS Authentication
Configuring JasperServer for CAS Authentication
Configuring Java to Trust the CAS Certificate
Modifying the Acegi Filter Chain
Adding the casAuthenticationProvider
Configuring the CAS Authentication Behavior
Mapping the User Roles
Configuring the Filters for CAS
Restarting JasperServer
Detailed Protocol Exchange
25

JasperServer External Authentication Cookbook
3.1 CAS Server for Testing
CAS is maintained and distributed by Jasig, a consortium of educational institutions and commercial affiliates sponsoring
open source software projects. Jasig provides a CAS server packaged as a web application that includes a built-in
authentication module that is suitable for testing. The built-in authentication module will accept any username and password
combination where the username and password are the same. You can download the server from the JA-SIG download page
http://www.jasig.org/cas/download.

As described in the next section, the CAS validation service only accepts requests using a secure transport. This means that
you must have a valid certificate on your CAS server machine, and your CAS client, the JasperServer JVM, must be
configured to trust that certificate. There are two important points to keep in mind:

Test with the CAS server on a separate machine, not the localhost where JasperServer is installed. For this purpose, a
virtual machine is acceptable.
Most issues in configuring CAS are caused by the improper use of certificates. The single most common failure is that the
hostname in the server's certificate doesn't match the actual hostname.

To create a certificate for the server you will need to use the Java keytool utility. Run the following command on the host
machine for the CAS server:

keytool -genkey -alias tomcat -keyalg RSA -validity 365 -keystore <filename>

You will be prompted for several pieces of information, two of which are critical. When prompted for “Your first and last
name” you must put in the hostname of the CAS server. When asked for the keystore password use changeit to match what
Apache Tomcat uses by default.

After installation of the CAS server, configure the Apache Tomcat application server that is running the CAS server so that it
uses the certificate in the keystore created above. Modify the file $CATALINA_HOME/conf/server.xml, locate the
commented section about setting up a secure HTTPS connector and follow the instructions it contains. Restart the Tomcat
server and test that it accepts HTTPS connections.

For further information about CAS, including deployment information, documentation, and community links, refer to the Jasig
CAS website http://www.jasig.org/cas. In particular, the page http://www.jasig.org/cas/server-deployment/solving-ssl-issues
can help you deploy your certificates.

3.2 Overview of External CAS Authentication
This section describes how JasperServer integrates the Acegi Security mechanisms to perform external CAS authentication,
including SSO.

The original CAS implementation, now called the CAS 1 architecture, had a centralized CAS server that processed requests
according to a protocol. The overview in this section explains the major steps involved in the protocol between the CAS server
and JasperServer, as well as the Acegi Security beans involved.

The newer CAS 2 architecture adds decentralized proxy authentication for the CAS server, but the underlying protocols are
conceptually the same from the JasperServer perspective. This chapter does not explain CAS proxies, but does cover the Acegi
Security beans that are used to configure JasperServer’s response to CAS proxies. Some explanation about how Acegi
Security beans interact with proxy responses is given in section 3.11, “Detailed Protocol Exchange,” on page 33.

CAS server also happens to be based on Spring Security, a newer version of Acegi Security. In a production
environment, you need to replace the built-in authentication for testing with an external authority that validates your
users when they log into CAS. As with JasperServer, you can configure CAS with a variety of external authorities to
suit your needs. Follow the CAS documentation to ensure you create a secure and robust configuration on your CAS
server.

For more information, see http://www.jasig.org/cas/cas1-architecture and http://www.jasig.org/cas/cas2-architecture.
26

http://www.jasig.org/cas
http://www.jasig.org/cas/cas1-architecture
http://www.jasig.org/cas/download
http://www.jasig.org/cas/cas2-architecture
http://www.jasig.org/cas/server-deployment/solving-ssl-issues

CAS Authentication
The general protocol during external CAS authentication is shown in the following diagram:

The following steps explain the interaction between the user’s browser, JasperServer, and the CAS server:
1. An unauthenticated user requests any page in JasperServer.

With SSO, JasperServer does not have a login page for users to bookmark. Instead, users can bookmark their home page
or any page that allows it in JasperServer. As a result, every user goes through this step for every page they request from
JasperServer, thereby securing every possible access to JasperServer.

2. JasperServer detects that the user is not logged in and replies with a redirect to the CAS login page.
The redirect URL contains a parameter which is another URL that tells CAS how it can request service validation from
JasperServer. For example:

http://hostname1/cas/login?service=http://hostname2/jasperserver/j_acegi_cas_security_check.

3. The user’s browser requests the CAS login page from the CAS server.
4. However, before serving the CAS login page to the user, CAS requests the service validation from JasperServer.

It extracts the URL parameter from the redirect URL and sends it a randomly generated number called a ticket, for
example: http://hostname2/jasperserver/j_acegi_cas_security_check?ticket=ST-8670-123buTvFFjo980

5. The JasperServer filter chain processes the service validation request and the casAuthenticationProvider is
invoked. It takes the ticket and establishes a secure connection to the CAS server to verify the credentials of the user
associated with the ticket, who is only known to the CAS server.
Only once the service is validated by the handshake over the secure connection does the CAS server attempt to get the
user’s credentials. If the CAS server detects its own session cookie on the user’s browser, this indicates the user has
logged in successfully before, and the CAS can retrieve the credentials. If there is no cookie, CAS serves its own login
page to the user, finally. When the user enters a username and password, CAS verifies them against its own database.

6. In either case, the CAS server replies to JasperServer with the validated username.
JasperServer maps the username to a predefined set of roles to create the principal object that establishes the user’s
session. The username and roles are also synchronized with the JasperServer database, where the user account is marked
as an external user. For more information about the external user account, see section 1.5, “External Users in the
JasperServer Database,” on page 10.

Figure 3-1 General Steps of External CAS Authentication

URLs may appear translated when viewed in browsers or in log files. For example, the previous URL can be written
http://hostname1/cas/login?service=http%3A%2F%2Fhostname2%2Fjasperserver%2Fj_acegi_cas_security_check.

JasperServer
Page request

Verify CAS client

Requested content
(subj. to authorization)

CASRedirect to CAS login page

Ticket
Gather credentialsService validation via HTTPS

Internal user
database

Principal object
incl. roles

CAS user
database

j_acegi_cas_security_check

or user cookie

Username
Set cookie
27

JasperServer External Authentication Cookbook
7. If the user submitted a valid username and password on the login page, the CAS server sets a session cookie on user’s
browser to be used for single sign-on with other applications that use the same CAS server.

8. As with the default internal authorization, JasperServer now sends the requested content to the user.
Content that is sent to the user is subject to authorization. For example the home page has different options for
administrators and regular users, as determined by the roles of the user in the principal object.

When comparing these steps with those in section 1.3, “Default Internal Authentication,” on page 7, there are several
significant differences:

JasperServer must redirect to the CAS login page instead of its own.
JasperServer must receive the ticket as part of the security check.
JasperServer must process the ticket and respond to the security check over HTTPS.
The roles in the user’s principal object are mapped from the username in the CAS response.
The JasperServer database must be synchronized with any new information in the user’s principal object.

3.3 Configuring JasperServer for CAS Authentication
The differences listed in the previous section reflect the changes that need to be made in the Acegi Security configuration and
on the JasperServer host. The items in the following list address each of the differences in the list above, in same order:

To perform the redirect upon receiving an unauthenticated request, replace the pre-filter for the authentication
ProcessingFilter with one tailored for CAS.
To receive the ticket through the security check URL, add a filter chain for that specific URL, and then modify the
behavior of the authenticationProcessingFilter in that chain.
To process the ticket, add CAS as an authentication provider in the authenticationManager bean and configure it to
receive the response from the CAS server or its proxy.
To establish the HTTPS connection, configure the JVM on the JasperServer host to trust the CAS server certificate.
To map roles, configure a helper bean for the CAS authentication provider. The default implementation maps
administrator roles to a static list of usernames, and all others have the minimal user roles.
The synchronization is already handled by the JIAuthenticationSynchronizer.

The following sections explain how to make the configuration changes presented above.

3.3.1 Files to Modify
The configuration for external CAS authentication is made in the following files:

$CATALINA_HOME/bin/catalina.sh or .bat, or the equivalent file for your application server.
<application-server-path>/jasperserver[-pro]/WEB-INF/applicationContext-security.xml

Where:
<application-server-path> is the location of the application server in which you deployed JasperServer.
-pro is part of the default pathname if you installed JasperServer Professional.

The rest of this document refers to file names alone. Refer to the paths above to find the file in your deployment.

3.3.2 Beans to Configure
This section explains the beans that are involved in external CAS authentication and how they relate to each other. Acegi
security provides all the beans to configure CAS authentication, except for the UserDetailsServiceImpl helper class that
JasperServer has provided since the 2.0.1 release.

If the user has disabled cookies, the CAS login protocol still works, but the single sign-on mechanism fails. When no
cookie is detected on the user’s browser, the user is prompted to log into the CAS server every time he or she
accesses a client application.
28

CAS Authentication
However, unlike the configuration of JasperServer for LDAP, the configuration beans for CAS are not included by default in
comments in the configuration files. As a result, you will need to add the following beans to the configuration file and edit
them for your particular settings. In many places you must find the existing configuration and replace it with the example.

The beans are listed here in the order they appear or should appear logically in the applicationContext-security.xml file.
filterChainProxy - Name of a bean of class FilterChainProxy for defining the how page requests are processed
and order of filters invoked on them.
authenticationManager - Name of a bean of class ProviderManager for performing authentication, configured
with:

casAuthenticationProvider - Name of a bean of class CasAuthenticationProvider, configured with:
casDaoAuthorityPopulator - Name of a bean of class DaoCasAuthoritiesPopulator, configured with:

casUserAuthorityService - Name of a bean of class UserDetailsServiceImpl that configures the
mapping of roles to username for external CAS users.

acceptAnyCasProxy - Class of an anonymous bean that determines the response to proxy CAS servers.
casTicketValidator - Name of a bean of class CasProxyTicketValidator configured with:

The HTTPS URL on the CAS server to respond to service validation requests.
authenticationServiceProperties - Name of bean configured below.

ehCacheBasedTicketCache - Class of an anonymous bean that configures where to store tickets:
ticketCache - Name of a bean of class EhCacheFactoryBean configured with:

ticketCacheManager - Name of a bean of class EhCacheManagerFactoryBean that gives the
location of the configuration file for the ticket cache.
A name for the ticket cache.

authenticationServiceProperties - Name of a bean of class ServiceProperties that specifies the URL to
which the CAS server should send the ticket to initiate service validation.
authenticationProcessingFilterEntryPoint - Name of a bean of class CasProcessingFilterEntryPoint
that specifies the URL of the CAS login page for redirection.
authenticationProcessingFilter - Name of a bean of class CasProcessingFilter that implements a new
authentication processing filter that only process tickets from the CAS server.

The remaining sections in this chapter give the configuration details for these beans. The sections are shown in the logical
order of the beans in the file, not in the order of the steps in the protocol with which they are associated.

3.4 Configuring Java to Trust the CAS Certificate
The CAS protocol requires that the response to the service validation be established over HTTPS for security. This connection
is established from the Java classes of Acegi Security, and therefore it is the Java security system that must be configured. Java
security must trust the certificate it receives from the CAS server, otherwise it will refuse to connect. This trust is based on two
factors:
1. The host name in the certificate has to match the host name in the URL of the connection. Certain JVMs require

hostnames as opposed to IP addresses, even if the IP addresses match. See section 3.1, “CAS Server for Testing,” on
page 26 for instructions to create a certificate in a keystore.

2. You must tell Java to trust the signing certificate:
a. Copy the file you used as the keystore for the CAS server to the JasperServer host machine.
b. On the JasperServer host machine, edit the file $CATALINA_HOME/bin/catalina.sh or .bat, or the equivalent file for

your application server. In the section for setting JAVA_OPTS, add the following option:
"-Djavax.net.ssl.trustStore=<keystore-path>"
29

JasperServer External Authentication Cookbook
3.5 Modifying the Acegi Filter Chain
In applicationContext-security.xml, locate the filterChainProxy bean and add a pattern for matching the URL that the
CAS server will request during service validation. The pattern must match the one you define in the following properties in
section 3.9, “Configuring the Filters for CAS,” on page 32:

The service property in the authenticationServiceProperties bean.
The filterProcessesUrl in the authenticationProcessingFilter bean.

Set the filter chain for this pattern as shown in the following example.

3.6 Adding the casAuthenticationProvider
In applicationContext-security.xml, locate the authenticationManager bean and add casAuthenticationProvider to
the top of the list of providers.

Unlike other forms of external authentication, CAS is not compatible with multiple authentication providers. You must
remove all other providers from the list, leaving only the anonymousAuthenticaionProvider as shown above. As a
consequence of this configuration, you must have users defined in CAS that will be your administrators, you cannot use the
default jasperadmin user account. See section 3.8, “Mapping the User Roles,” on page 32 for instructions on designating
which CAS user will be mapped to the administrator roles.

<bean id="filterChainProxy" class="org.acegisecurity.util.FilterChainProxy">
<property name="filterInvocationDefinitionSource">

<value>
CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
PATTERN_TYPE_APACHE_ANT

/xmla=httpSessionContextIntegrationFilter,basicProcessingFilter,
JIAuthenticationSynchronizer,anonymousProcessingFilter,
basicAuthExceptionTranslationFilter,filterInvocationInterceptor

/services/**=httpSessionContextIntegrationFilter,basicProcessingFilter,
JIAuthenticationSynchronizer,anonymousProcessingFilter,
basicAuthExceptionTranslationFilter,filterInvocationInterceptor

/j_acegi_cas_security_check=httpSessionContextIntegrationFilter,
authenticationProcessingFilter,anonymousProcessingFilter,
exceptionTranslationFilter,filterInvocationInterceptor

/**=httpSessionContextIntegrationFilter,userPreferencesFilter,
authenticationProcessingFilter,basicProcessingFilter,JIAuthenticationSynchronizer,
anonymousProcessingFilter,exceptionTranslationFilter,filterInvocationInterceptor

</value>
</property>

</bean>

<bean id="authenticationManager" class="org.acegisecurity.providers.ProviderManager">
<property name="providers">

<list>
<ref local="casAuthenticationProvider"/>
<ref local="anonymousAuthenticationProvider"/>

</list>
</property>

</bean>
30

CAS Authentication
3.7 Configuring the CAS Authentication Behavior
Below the authenticationManager in the applicationContext-security.xm file, add the casAuthenticationProvider
and its helper beans as shown in the following example. In particular, the casTicketValidator bean is configured with the
HTTPS URL where tickets are validated on the CAS server.

The helper beans for the ticket cache use default settings provided by Acegi Security and do not need to be further modified.

<bean id="casAuthenticationProvider"
class="org.acegisecurity.providers.cas.CasAuthenticationProvider">

<property name="casAuthoritiesPopulator">
<ref local="casDaoAuthorityPopulator"/></property>

<property name="casProxyDecider">
<bean class="org.acegisecurity.providers.cas.proxy.AcceptAnyCasProxy"/></property>

<property name="ticketValidator"><ref local="casTicketValidator"/></property>
<property name="statelessTicketCache">

<bean class="org.acegisecurity.providers.cas.cache.EhCacheBasedTicketCache">
<property name="cache"><ref local="ticketCache"/></property></bean></property>

<property name="key"><value>lam_or_lame</value></property>
</bean>

<bean id="ticketCacheManager"
class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean">

<property name="configLocation">
<value>classpath:/ehcache-failsafe.xml</value></property>

</bean>

<bean id="ticketCache" class="org.springframework.cache.ehcache.EhCacheFactoryBean">
<property name="cacheManager"><ref local="ticketCacheManager"/></property>
<property name="cacheName"><value>casTicketCache</value></property>

</bean>

<bean id="casTicketValidator"
class="org.acegisecurity.providers.cas.ticketvalidator.CasProxyTicketValidator">

<property name="casValidate">
<value>https://hostname1/cas/proxyValidate</value></property>

<property name="serviceProperties">
<ref local="authenticationServiceProperties"/></property>

</bean>
31

JasperServer External Authentication Cookbook
3.8 Mapping the User Roles
Among the helper beans for the casAuthenticationProvider in the applicationContext-security.xm file, add the
casDaoAuthorityPopulator and the casUserAuthorityService beans that map roles to users.

This simple implementation of the userDetailsServiceImpl class is configured with the following:
adminUsers - A list of usernames that will be granted administrator privileges in JasperServer. The username values
must match exactly the usernames authenticated and returned by the CAS server.
defaultAdminRoles - A list of JasperServer role names that will be assigned to every user in the list of administrators.
defaultInternalRoles - A list of JasperServer role names that will be assigned to every user not in the list of
administrators.

3.9 Configuring the Filters for CAS
Finally, we need to replace the authenticationProcessingFilter and the
authenticationProcessingFilterEntryPoint for CAS. Notice that we keep the same bean names in the id attribute
and substitute a different class with its specific properties. Because these beans are referenced by name in the beans that call
them, the new classes will automatically be used instead. Alternatively, we could give the new beans new names, but then we
would also need to re-configure the beans that call them. The documentation for Acegi Security takes the latter approach.

<bean id="casDaoAuthorityPopulator"
class="org.acegisecurity.providers.cas.populator.DaoCasAuthoritiesPopulator">

<property name="userDetailsService"><ref local="casUserAuthorityService"/></property>
</bean>

<bean id="casUserAuthorityService"
class="com.jaspersoft.jasperserver.api.metadata.user.service.impl.UserDetailsServiceImpl">
<property name="adminUsers">

<list><value>tomcat</value></list></property>
<property name="defaultAdminRoles">

<list><value>ROLE_USER</value>
<value>ROLE_ADMINISTRATOR</value></list></property>

<property name="defaultInternalRoles">
<list><value>ROLE_USER</value></list></property>

</bean>
32

CAS Authentication
Locate and replace the existing entries in the applicationContext-security.xm file with the following beans:

The service property of the authenticationServiceProperties bean specifies the JasperServer URL that will receive
the ticket when the CAS server performs service validation. The loginUrl property of the
authenticationProcessingFilterEntryPoint bean specifies the login URL for the CAS server, the one to which
JasperServer will redirect all users for authentication.

3.10 Restarting JasperServer
When you have configured all the beans in the appropriate files, restart JasperServer. Because of the modification to the
application server configuration in 3.4, “Configuring Java to Trust the CAS Certificate,” on page 29, you need to restart
the application server, which will also restart JasperServer.

Instead of navigating to the JasperServer login page, go directly to another page in JasperServer; your home page, for
example:

http://hostname2:8080/jasperserver/flow.html?_flowId=homeFlow

If JasperServer, CAS, and your certificates are configured correctly, you should be prompted to log into the CAS server, and
when you do so, you should be redirected to the JasperServer home page for the user you logged in as.

3.11 Detailed Protocol Exchange
This section gives a more detailed view of the protocol exchange between the Acegi components of JasperServer and the CAS
server. It shows which beans respond to the various communications and how they exchange information to authenticate a
user.

This section is based on the Acegi Security documentation. For links to the source, see section 1.4, “Acegi Security
Framework,” on page 7.
1. The user requests a page that is either secure or that includes secure beans. Acegi Security's

ExceptionTranslationFilter detects an AuthenticationException. Because the user's Authentication object
(or lack thereof) caused an AuthenticationException, the ExceptionTranslationFilter calls the configured
AuthenticationEntryPoint. If using CAS, this is the CasProcessingFilterEntryPoint class.

<bean id="authenticationServiceProperties"
class="org.acegisecurity.ui.cas.ServiceProperties">

<property name="service">
<value>http://hostname2/jasperserver/j_acegi_cas_security_check</value></property>

<property name="sendRenew"><value>false</value></property>
</bean>

<bean id="authenticationProcessingFilterEntryPoint"
class="org.acegisecurity.ui.cas.CasProcessingFilterEntryPoint">

<property name="loginUrl"><value>http://hostname1/cas/login</value></property>
<property name="serviceProperties"><ref local="authenticationServiceProperties"/>
</property>

</bean>

<bean id="authenticationProcessingFilter"
class="org.acegisecurity.ui.cas.CasProcessingFilter">

<property name="authenticationManager"><ref local="authenticationManager"/></property>
<property name="authenticationFailureUrl"><value>/loginerror.html</value></property>
<property name="defaultTargetUrl"><value>/loginsuccess.html</value></property>
<property name="filterProcessesUrl"><value>/j_acegi_cas_security_check</value></property>

</bean>
33

JasperServer External Authentication Cookbook
2. The CasProcessingFilterEntry point redirects the browser to the CAS server and specifies a service parameter,
which is the callback URL for Acegi Security service. For example, the browser could be redirected to
http://hostname1/cas/login?service=https%3A%2F%2Fhostname2%2Fjasperserver%2Fj_acegi_cas_security_check.
Both URLs are configurable.

3. After the browser redirects to CAS, the user is prompted for their username and password, unless they have a session
cookie that indicates they've logged in previously. In this case, they are not prompted to login again (with a single
exception, which is discussed later). CAS uses the PasswordHandler (or AuthenticationHandler if using CAS 3.0)
to decide whether the username and password is valid.

4. If login is successful, CAS redirects the browser to the callback URL as requested. It also includes a ticket parameter,
which is an opaque string representing the “service ticket.” For example, the browser might be redirected to:
http://hostname2/jasperserver/j_acegi_cas_security_check?ticket=ST-0-ER94xMJmn6pha35CQRoZ

5. In the web application, the CasProcessingFilter always listens for requests to /j_acegi_cas_security_check. The
processing filter constructs a UsernamePasswordAuthenticationToken representing the service ticket. The principal
is equal to CasProcessingFilter.CAS_STATEFUL_IDENTIFIER, and the credentials are the opaque “service ticket”
string. The authentication request is sent to the configured AuthenticationManager.

6. The AuthenticationManager implementation is the ProviderManager, which in turn is configured with the
CasAuthenticationProvider. The latter only responds to UsernamePasswordAuthenticationTokens
containing the CAS-specific principal (such as CasProcessingFilter.CAS_STATEFUL_IDENTIFIER) and
CasAuthenticationTokens (discussed below).

7. CasAuthenticationProvider validates the service ticket using a TicketValidator implementation. In Acegi, this
is implemented as CasProxyTicketValidator. This implements a ticket validation class included in the CAS client
library. The CasProxyTicketValidator sends a service ticket validation HTTPS request to the CAS server. The
CasProxyTicketValidator may also include a proxy callback URL. For example:
https://hostname1/cas/proxyValidate?service=https%3A%2F%2Fhostname2%2Fjasperserver%2F
j_acegi_cas_security_check&ticket=ST-0-ER94xMJmn6pha35CQRoZ&pgtUrl=https://hostname2/
jasperserver/casProxy/receptor

8. When the CAS Server receives the proxy validation request, it checks to see if the service ticket matches the service URL
to which it was issued. If they match, CAS returns an affirmative XML response that specifies the username. If any proxy
was involved in the authentication (discussed below), the list of proxies is also included in the XML response.

9. Optionally, when the request sent to the CAS validation service includes the proxy callback URL in the pgtUrl
parameter, CAS includes a pgtIou string in the XML response. This string represents a proxy-granting ticket IOU. The
CAS server then creates its own HTTPS connection to pgtUrl. This authenticates both the CAS server and the claimed
service URL. The systems uses the HTTPS connection to send a proxy-granting ticket to the original web application. For
example:
https://hostname2/jasperserver/casProxy/receptor?pgtIou=PGTIOU-0-R0zlgrl4pdAQwBvJWO3vnNpevwqStbSGcq3v
&pgtId=PGT-1-si9YkkHLrtACBo64rmsi3v2nf7cpCResXg5MpES.

If you require proxy-granting tickets, use CAS’s ProxyTicketReceptor servlet to receive them.

10. The CasProxyTicketValidator parses the XML it received from the CAS server. It returns a TicketResponse to
the CasAuthenticationProvider, including the username (mandatory), proxy list (if any were involved), and proxy-
granting ticket IOU (if the proxy callback was requested).

11. Next, CasAuthenticationProvider calls a configured CasProxyDecider, which indicates whether the proxy list in
the TicketResponse is acceptable. Several implementations are provided with Acegi Security System:
RejectProxyTickets, AcceptAnyCasProxy, and NamedCasProxyDecider. The first two implementations are self-
explanatory, while NamedCasProxyDecider can be configured with a list of trusted proxies.

12. CasAuthenticationProvider requests a CasAuthoritiesPopulator to advise the GrantedAuthority objects
that apply to the user contained in the TicketResponse. Acegi Security includes a DaoCasAuthoritiesPopulator
that uses the UserDetailsService infrastructure to find the UserDetails and the associated GrantedAuthority
objects. Note that the system ignores the password and enabled/disabled status of UserDetails returned by the
UserDetailsService, as the CAS server is responsible for authentication decisions.
DaoCasAuthoritiesPopulator only retrieves the GrantedAuthority objects.
34

CAS Authentication
13. If no problems were encountered, CasAuthenticationProvider constructs a CasAuthenticationToken, including
the details contained in the TicketResponse and the GrantedAuthority objects. The token contains the hash of a key,
so that the CasAuthenticationProvider knows it created the response.

14. Control is returned to CasProcessingFilter, which places the created CasAuthenticationToken into the
HttpSession attribute named HttpSessionIntegrationFilter.ACEGI_SECURITY_AUTHENTICATION_KEY.

15. The browser is redirected to the original page that caused the AuthenticationException.

16. Since the Authentication object is now in the well-known location, it is handled like any other authentication
approach. Usually the HttpSessionIntegrationFilter is used to associate the Authentication object with the
SecurityContextHolder for the duration of each request.
35

JasperServer External Authentication Cookbook
36

	1 Introduction
	1.1 Overview and Terminology
	1.2 Multiple Organizations in JasperServer
	1.3 Default Internal Authentication
	1.4 Acegi Security Framework
	1.4.1 Acegi Filter Chain
	1.4.2 Step 1: Receiving a Page Request
	1.4.3 Step 2: Redirecting to the Login Page
	1.4.4 Step 3: Processing Login Credentials
	1.4.5 Step 4: Sending Requested Content

	1.5 External Users in the JasperServer Database
	1.5.1 Automatic Synchronization of External Users
	1.5.2 Initialization of JasperServer for External Users
	1.5.3 Maintenance of External Users

	2 LDAP Authentication
	2.1 Overview of External LDAP Authentication
	2.2 Configuring JasperServer for LDAP Authentication
	2.2.1 Files to Modify
	2.2.2 Beans to Configure

	2.3 Adding the ldapAuthenticationProvider
	2.4 Setting the LDAP Connection Parameters
	2.5 Setting the LDAP Search Parameters
	2.5.1 Specifying userDnPatterns
	2.5.2 Specifying userSearch
	2.5.3 Alternate to Bind Authentication

	2.6 Mapping the User Roles
	2.7 Mapping the User Organization (JasperServer 3.5 Professional Only)
	2.7.1 Mapping to an Organization Hierarchy
	2.7.2 Mapping to a Single Organization

	2.8 Restarting JasperServer
	2.9 Authentication with Computer Associates SiteMinder
	2.10 Authentication with Microsoft Active Directory

	3 CAS Authentication
	3.1 CAS Server for Testing
	3.2 Overview of External CAS Authentication
	3.3 Configuring JasperServer for CAS Authentication
	3.3.1 Files to Modify
	3.3.2 Beans to Configure

	3.4 Configuring Java to Trust the CAS Certificate
	3.5 Modifying the Acegi Filter Chain
	3.6 Adding the casAuthenticationProvider
	3.7 Configuring the CAS Authentication Behavior
	3.8 Mapping the User Roles
	3.9 Configuring the Filters for CAS
	3.10 Restarting JasperServer
	3.11 Detailed Protocol Exchange

